X^2+84x-160=0

Simple and best practice solution for X^2+84x-160=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+84x-160=0 equation:



X^2+84X-160=0
a = 1; b = 84; c = -160;
Δ = b2-4ac
Δ = 842-4·1·(-160)
Δ = 7696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7696}=\sqrt{16*481}=\sqrt{16}*\sqrt{481}=4\sqrt{481}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-4\sqrt{481}}{2*1}=\frac{-84-4\sqrt{481}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+4\sqrt{481}}{2*1}=\frac{-84+4\sqrt{481}}{2} $

See similar equations:

| 7a=12+3a | | -3+10=12x-5-11x | | 6x-10=4x-4 | | -29+8x=-3(7x+4) | | X/2+3/2=2x/5=-1 | | F(7)=3-x | | (x-5)(x+1)(x-4)=0 | | 6x+11=x-5 | | -6(4p+4)-16=2(2p+8) | | 3.9x+41.5=18.9-7.4x | | 7-5n+2n=20-79 | | 4y+29=13 | | -105+7y+5=4(4y-4)-3 | | 8(c-4)+6=4+c-30 | | 3/2(4)+4(2)=y | | 15-3b=21 | | m=4,6/5 | | 3/2(4)+4(12)=y | | 18=5e-2 | | 3/2(4)+4(-2)=y | | 17=2p+9 | | 3g+1=25 | | 7.5+3.509m=-26.888 | | 3/2(4)+4(-12)=y | | 2f=40 | | 6m-4=68 | | 3/2(4)+4y=-2 | | 51=5q+6 | | 9+11t-3=4t+51-2t | | 6q+20=60-4q | | 2x+17+6x+9=4x-1 | | 2+1c=5c-16 |

Equations solver categories